

This factory acceptance test outlines the procedures
undertaken to demonstrate that the equipment is

functioning as intended.

Minimum required release:
acq400-131-20191107115916

Recommended:
RELEASE acq400-132-20191119141501

3 * ACQ2106 + 4xACQ424 + AO424
+ DIO432 in low latency control

mode to a single host.

Revision of document.

Date Change

22.11.2019 Added more detailed information on
plotting data

25.11.2019 Added numbers to the plots and their
corresponding descriptions.

26.11.2019 Added some information on debug.

20.12.2019 Added sample construction information.

23.01.2020 Fixed sample construction diagram.

27.01.2020 Added a section on working with a BOLO8
system.

29.01.2020 Added CS Studio information and
improved BOLO8 data explanation.

10.02.2020 Added section on isolating CPUs.

Load driver for low latency control.

To configure the host computer for low latency control mode there is a
script that must be run in order to load the driver for the module. The script
can be found in the D-TACQ AFHBA404 github repo here:

https://github.com/D-TACQ/AFHBA404

To load please run the following commands inside the AFHBA404 directory
after cloning (or updating) the repository:
sudo make

sudo ./scripts/install-hotplug

sudo ./scripts/loadNIRQ

N.B. Make sure that you use at least:
https://github.com/D-TACQ/AFHBA404/releases/tag/1.4.1

Or higher.

https://github.com/D-TACQ/AFHBA404
https://github.com/D-TACQ/AFHBA404/releases/tag/1.4.1

Installing acq400_hapi

The user will need to clone acq400_hapi from GitHub and install it
on PIP. The repository can be found here:

https://github.com/D-TACQ/acq400_hapi

The repository should be cloned to the following location on the
host computer:

/home/$USER/PROJECTS/

It can be cloned using the following command:
git clone https://github.com/D-TACQ/acq400_hapi.git

Once this repository has been cloned, acq400_hapi can be
installed by running:
sudo pip3 install acq400_hapi

https://github.com/D-TACQ/acq400_hapi

ACQ424

ACQ424

ACQ424

ACQ424

DIO432

SFP
AO424

HDMI

ACQ424

ACQ424

ACQ424

ACQ424

DIO432

SFP
AO424

HDMI

ACQ424

ACQ424

ACQ424

ACQ424

DIO432

SFP
AO424

HOST

SFP B

SFP A

SFP C

B
N
C

P
A
N
E
L

B
N
C

P
A
N
E
L

Signal
Generator

HDMI

acq2106_S01

acq2106_S02

acq2106_M01

acq2106_M01 – Master
acq2106_S01 – Slave
acq2106_S02 - Slave-Slave

FP CLK FP TRG

Front panel clock
and trigger can
be provided by
the user.

Set up CS Studio

Configure CS Studio to monitor the UUTs. It is best to use the
STREAMVIEW4.opi. Configure a CS Studio workspace as such:

Set macros UUT1 UUT2 UUT3 UUT4 from

Edit|Preferences|CSS Applications->Display->BOY|OPI Runtime

Run STREAMVIEW4.opi direct from Navigator

 new file: ACQ400/STREAMVIEW4.opi

 new file: ACQ400/opi/stream_view.opi

An image showing what the CS Studio OPI looks like is included
in the following slide.

Isolating CPUs

For performance reasons it makes sense to isolate a CPU (or more than one) to
handle the control program. This means that the linux scheduler will not be
allowed to allocate any other processes to the CPUs that have been isolated. To
get a task to run on the isolated CPUs the user must explicitly specify which
CPUs the program is allowed to run on either using taskset or sched_set_affinity.

To isolate CPUs the user should edit the grub file. An example grub file is
provided on the following slide. Once the file has been edited the user should
make a new grub config like so:

grub-mkconfg -o /boot/grub/grub.cfg

Once this has been done a reboot is required for the changes to be implemented.
To check the changes were successful the user can use:

[dt100@seil ~]$ cat /sys/devices/system/cpu/isolated

0-1

New grub file with CPUs isolated.

[dt100@seil ~]$ cat /etc/default/grub

GRUB_SAVEDEFAULT=true

GRUB_DEFAULT=0

GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

#GRUB_CMDLINE_LINUX_DEFAULT=""

GRUB_CMDLINE_LINUX="console=ttyS1,115200 console=tty0"

GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=0,1"

isolcpus="0,1"

GRUB_TERMINAL="serial"

GRUB_SERIAL_COMMAND="serial --speed=115200 --unit=0 --word=8 --parity=no --stop=1"

GRUB_INIT_TUNE="480 440 1"

Control script

A control script has been created to automate the LLC capture. It is contained in the scripts
directory of the AFHBA404 GitHub repository referenced in the previous slide.

To run the script “cd” into the AFHBA404 directory and run the following command:
./scripts/acqproc_multi.sh

There are a few parameters which can be configured inside the script. These include
whether or not to use MDSplus (entirely optional) and which UUTs are currently being
used. If the user wishes to use MDSplus the local MDSplus server must also be specified.

The control script will configure the system clocks using the sync_role script. This can also
be changed. By default it is set to configure the first system as a “master” and all
subsequent systems as slaves over HDMI. This setting can be changed to “fpmaster” if
the user wishes to use a front panel clock and trigger. The default clock speed is 20kHz
although this can also be changed. The slaves always share the same clock as the master
system.

Once the system is configured for capture the control program is started. After the control
program has been started the system is armed and triggered. The default capture length is
400k samples and this is also configurable.

Explanation of the control scripts

There are two control scripts that are used to configure the systems for LLC capture. The
first is llc-config-utility.py which configures the aggregator and distributor onboard the
FPGA on all of the systems.

Then the clocks are set by sync_role.py. The clocks can be configured by the user (the
clocks should not be set faster than ~500kHz).

Output of the control script

The control script will display a histogram of the T_LATCH values, showing how
many samples were missed by the host computer (the T_LATCH is the sample
counter, so the difference between any two consecutive samples should be one).
Ideally there should be no samples missed. There is also some textual output of the
T_LATCH histogram data.

The control script will also automatically configure the UUT to calculate some
latencies. These latencies are encoded in the scratchpad and will be shown in a
histogram, along with some relevant statistics. Please note that the latency registers
will not be enabled unless the UUT is running the firmware “RELEASE acq400-125-
20190930193608” or above. If your system is not running this release then you can
upgrade according to section 29.3 of the the 4GUG available here:
http://www.d-tacq.com/resources/d-tacq-4G-acq4xx-UserGuide-r28.pdf

Example histograms are are shown in the following pages. Since there are three
UUTs in the loop for this test, there will be six histograms shown in total. Once the
FAT has been completed these can be turned off inside the script by disabling the
analysis.

http://www.d-tacq.com/resources/d-tacq-4G-acq4xx-UserGuide-r28.pdf

Sample construction
Sample 1 Sample 2 ... Sample N

128 short words
of AI data

(where 32767 = 10V
And -32768 = -10V)

1 long word
of DIO data

15 long words of
scratchpad

[0]
 Sample
counter

[1]
Micro-

Second
counter

[2]
Pollcat

(busy wait
time >1 is

good)

[3]
Difftime in

microseconds
(absolute time

waiting
for sample)

[4]
Latency:

LATEST &
AVERAGE

[5]
Latency:

MAX & MIN

[6]
Ident:

0xcccc

[7]
8th long

word to end:
spare

This long word is
actually two shorts

combined. The top half
is the Latest and the

bottom half is the Average.
Units are in ticks of a 125MHz

clock (8 nanosecond ticks).

This long word is
actually two shorts

combined. The top half
is the Max and the

bottom half is the Min.
Units are in ticks of a 125MHz

clock (8 nanosecond ticks).

Note: In the scratchpad blue
fields are generated
on the acq2106 and

yellow fields are inserted
by the control program

Histogram of the sample counter
(T_LATCH) on an ideal run.

Histogram of the FPGA maximum
latency register

Plotting data from the first UUT

Due to the number of channels and number of cards, there are three separate example commands to plot
data (one command for each UUT).

The commands use a python script called host_demux.py which can be found in the user_apps/analysis/
directory of acq400_hapi. The first command is as such:

python3 ./host_demux.py --src=/home/dt100/PROJECTS/AFHBA404/uut0_data.dat \
--nchan=160 --pchan=1,2,45,80,109 --data_type=16 --plot_mpl=1 \ --mpl_subrate=1
acq2106_085

Provided the system has been connected according to the setup diagram on page 4, this will plot:

1. The input channel (CH001),

2. The first AO loopback (CH002),

3. The first DO loopback (any from CH033:CH064, with CH045 chosen for readability),

4. The AO from UUT2 (CH080),

5. The DO from UUT2 (any from CH097:CH128, with CH109 chosen for readability).

The resultant plot is shown on the next slide.

Data plotted from the first (master)
UUT

1. Sig gen
wave

2. AO1

3. DO1

4. AO2

5. DO2

Plotting data from the second UUT

The command to plot data from the second UUT is as follows:

python3 ./host_demux.py \
--src=/home/dt100/PROJECTS/AFHBA404/uut1_data.dat \

--nchan=160 --pchan=1:2 --data_type=16 --plot_mpl=1 \ --mpl_subrate=1
acq2106_085

This will plot:

1. The first input channel (a copy of CH01 from UUT1),

2. The second channel (looped back from UUT3 AO),

The plot for this command is shown on the following page.

Data plotted from the second (slave)
UUT

1. Sig gen
signal
copied to
AI 1 in
software.

2. AO 3.

Plotting data from the third UUT

The command to plot data from the third UUT is as follows:

python3 ./host_demux.py \ --src=/home/dt100/PROJECTS/AFHBA404/uut2_data.dat
--nchan=160 \ --pchan=13,14,15 --data_type=16 \ --plot_mpl=1
--mpl_subrate=1 \ acq2106_085

This plots:

1. Channel 13 on UUT3’s DO.

2. Channel 14 on UUT3’s DO.

3. Channel 15 on UUT3’s DO.

The corresponding plot is on the following page.

Data plotted from the third (slave-
slave) UUT

1. DIO3
(bit 13)

2. DIO3
(bit 14)

3. DIO3
(bit 15)

Demonstration of 16 bits of digital
output looped back to an AI module
Here is an example of showing all 16 digital outputs on a DIO432 looped back
to 16 channels on an AI module.

The command to do this was:
python3 ./host_demux.py --src=/home/dt100/PROJECTS/AFHBA404/uut2_data.dat \
--nchan=160 --pchan=1:16 --data_type=16 --plot_mpl=1 --mpl_subrate=1 acq2106_085

Comparison of AO channels to
signal generator.

Here the AO channels are compared to the signal generator. At 20kHz there should be a single sample difference.

As can be seen from the plot there is a single sample (at 20kHz) difference between the signal generator and the
re-sampled AO waves.

The command to plot is as so:

python3 ./scripts/llc_multi_wave_comparison.py

Analysing the latency of the data

The control script analyses the FPGA latency registers and plots
the histogram of that data, but the latency can also be seen on a
scope for an independent verification of the latency. There are
already guides written by D-TACQ that explain how to measure the
latency of the system. The D-TACQ low latency white paper is
available here:

http://www.d-tacq.com/resources/LLC_White_Paper.pdf

And the D-TACQ LLC system latency measurement guide,
available here:

LLC-system-latency-measurement-guide.pdf

The following page contains a scope trace showing the latency of
the system.

http://www.d-tacq.com/resources/LLC_White_Paper.pdf
https://github.com/seanalsop/LLC-system-latency-measurement-guide/releases/download/v1/LLC-system-latency-measurement-guide-r5.pdf

Appendix: Including a BOLO8
mezzanine in the system.

If the user wishes to include a 4th acq2106 with
BOLO8 mezzanines then there is another
control script to control this type of operation.
The script is included in the following directory in
the AFHBA404 repo:

scripts/acqproc_multi_bolo.sh

This will configure capture for the the systems
as in the previous section, PLUS configure the
BOLO acq2106.

Information on BOLO LLC

There is a full FAT on BOLO LLC operation that
should be considered before attempting to
configure a BOLO UUT within the UUT stack.
This FAT can be found here:
http://www.d-tacq.com/details_page.php?prod_id=contact&page_id=2

Under BOLO8 LLC FAT.

http://www.d-tacq.com/details_page.php?prod_id=contact&page_id=2

New control program

Along with the new control script there is also a
new control program that handles the BOLO
alongside the original 3 UUTs. This new
program can be found in the following location
in the AFHBA404 repo:

LLCONTROL/afhba-llcontrol-multiuut-4AI1AO1DX.c

Using hexdump to view the data

It can be useful to hexdump the data to check
the composition of the data. The following
command may be changed to check different
columns of long word data (scratchpad or
BOLO8 data for instance).
hexdump -e '80/4 "%08x," "\n"' uut3_data.dat | cut -d, -f1,4,8,49-55 | head

The following command will work for viewing
short word data (acq424 channels for instance).
hexdump -e '160/2 "%04x," "\n"' uut0_data.dat | cut -d, -f1-10 | more

Parsing the BOLO8 data

The standard 128AI, Dx, 32AO box has a sample size 320 bytes

2 site BOLO test unit has a sample size 256bytes.

However, the llcontrol program continues to store 320bytes from each UUT in its output data file regardless of actual
content, and so uut3_data.dat therefore contains data at 320bytes per sample.

When viewing BOLO data, extract the data from the file at 320 bytes per sample, and ignore anything beyond 256
bytes.

eg this is all the valid data:

hexdump -e '80/4 "%08x," "\n' | cut -d, -f1-64

hexdump -e '128/2 "%04x," 1/4 "%08x," 1/4 "%10d," 14/4 "%08x," "\n"' uut3_data.dat |
cut -d, -f1,2,17,129,130 | more

 From that, remember the BOLO data is grouped in 3's, MAG, PHASE, POWER, so you probably only want to see
every 3rd channel, and the after the TLATCH, the rest of the SPAD isn't interesting. So, to dump data from 4 channels
in site 1 + TLATCH:

hexdump -e '80/4 "%08x," "\n' | cut -d, -f1,4,7,10,49

Debug

If something doesn’t work in acqproc_multi.sh then there are a few
steps to take to make sure things are configured correctly. The
acqproc_multi script assumes that the system configuration is identical
to that in the diagram on page 5. It is worth checking that this is the
case. HDMI connections and SFP connections are crucial to have wired
correctly.

If the system is configured exactly as shown on page 5, then the user
should check the clocks and triggers on each UUT individually. The
best method of doing this is using CS Studio. Instructions for installing
and using CS Studio can be found here:

https://github.com/D-TACQ/ACQ400CSS

Once CS Studio is installed the user should check for each UUT that
the clocks and triggers are accounted for.

https://github.com/D-TACQ/ACQ400CSS

CS Studio counters page

The CS Studio counters page should look very similar to the image below after running a capture
using acqproc_multi.sh. It contains the information for the clocks on each site and information about
the triggers. In this case the trigger is set to soft, so we get 1 soft trigger in the d1 trigger counter
box, and a corresponding trigger in the d2 trigger box. The user should check this information for
each UUT.

Check UUTs are streaming

To check that the UUTs are streaming data the user should observe the stream tab of the capture OPI
as shown below. During a capture the sample count should be ticking up. The clock speed should also
be visible in the box next to it. The rate will also be visible in the rate box. Again, this should be verified
for all UUTs.

Check CS Studio MGT-SFP page

The MGT-SFP page is useful for checking whether data has been sent to the host and if data has been
returned from the host. After running one capture the page should look similar to the image below. There
should be 1 push buffer and 1 pull buffer with a non zero value in each (how large depends on how much
data has been streamed). Check all the UUTs are the same after rebooting and running a single capture.

Checking which sites are enabled

If there is data going to the host (as shown in the previous page), but the system still isn’t
working, then check that the correct sites are included in the aggregator. This can also be
seen in the image in the previous slide in the ‘push’ and ‘pull’ boxes in the MGT-SFP OPI.
The sites included in the ‘push’ box should be AI and DI, and the sites included in the ‘pull’
box should be AO and DO. Note that DO and DI will likely be the same site (site 6).

Checking the DI

The user can verify the Digital Input by
attaching a square wave signal to the DIO432
mezzanine and an AI channel. By default the
lower DIO432 will be configured half as DO and
half as DI. Connecting channel 17 will toggle
the 17th bit of the DIO data. An example of this
is shown on the following slide.

17th bit toggling

[dt100@seil AFHBA404]$ hexdump -e '80/4 "%08x " "\n"' uut0_data.dat | awk '{ print $65" "$66 }' | more

00000000 00000001

00000000 00000002

00010001 00000003

...

0001000e 00000011

...

0001000f 00000012

00000011 00000013

...

00000023 00000026

00010026 00000029

00010026 0000002a

Hexdump DI vs AI

The following command will show the sampled AI data against the DI data, with the sample counter included. Please note that
due to the way the DIO samples it will always lag one sample behind the AI.

[dt100@seil AFHBA404]$ hexdump -e '128/2 "%04x," 1/4 "%08x," 1/4 "%10d," 14/4 "%08x," "\n"' uut2_data.dat | cut -d, -f1-4,129,130 | more

005e,3e46,0038,000f,00000000, 1

0042,3e5d,0031,000a,00000000, 2

002c,3e50,0028,0008,00000000, 3

001f,3e53,0020,0005,00010001, 4

0015,3e57,0018,0003,00010002, 5

ffad,0013,ffd4,fff0,00010003, 6

ffc2,0001,ffd4,fff2,00000004, 7

ffd4,0003,ffd7,fff5,00000005, 8

ffe0,0006,ffdc,fff7,00000006, 9

ffe7,0005,ffe2,fff9,00000007, 10

004c,3e47,0026,000c,00000008, 11

0036,3e5a,0023,000a,00010009, 12

0024,3e54,001e,0006,0001000a, 13

0019,3e55,0017,0003,0001000b, 14

0011,3e3d,0011,0002,0001000c, 15

ffaa,0011,ffcf,fff0,0001000d, 16

ffc2,fffe,ffd0,fff2,0000000e, 17

ffd2,0001,ffd6,fff4,0000000f, 18

ffdf,0006,ffdb,fff7,00000010, 19

ffe6,0008,ffe2,fff8,00000011, 20

004e,3e46,0022,000b,00000012, 21

0036,3e5a,0023,0008,00010013, 22

0025,3e54,001e,0005,00010014, 23

001a,3e56,0018,0004,00010015, 24

0011,3e58,0010,0000,00010016, 25

ffab,0010,ffcf,ffef,00010017, 26

ffc1,fffc,ffcf,fff3,00000018, 27

Hexdump DI vs AI with acq196
emulation

The following command is the same as the previous command, except with acq196 emulation enabled (so real CH02
appears demuxed on CH17):
[dt100@seil AFHBA404]$ hexdump -e '128/2 "%04x," 1/4 "%08x," 1/4 "%10d," 14/4 "%08x," "\n"' uut2_data.dat | cut -d, -f1,2,17,129,130 | more
004b,0043,3e4d,00000000, 1
0035,002e,3e46,00000000, 2
0025,001e,3e4a,00000000, 3
0017,0014,3e45,00010000, 4
0013,000c,3e46,00010003, 5
ffbd,ffb9,ffef,00010003, 6
ffcc,ffc9,0009,00000004, 7
ffda,ffd6,fff9,00000004, 8
ffe3,ffdf,fffa,00000006, 9
ffeb,ffe3,fffb,00000007, 10
003c,0035,3e4c,00000008, 11
002c,0025,3e42,00010009, 12
001f,0018,3e43,0001000a, 13
0012,000e,3e47,0001000b, 14
0008,0005,3e4b,0001000c, 15
ffb4,ffb3,ffef,0001000d, 16
ffc6,ffc2,fff0,0000000e, 17
ffd3,ffd0,fffd,0000000e, 18
ffdd,ffd6,fff9,00000010, 19
ffe4,ffdf,fffb,00000010, 20
0038,0030,3e4d,00000012, 21
0023,0021,3e45,00010013, 22
0018,0013,3e41,00010015, 23
0010,000b,3e45,00010015, 24
0008,0003,3e4e,00010017, 25
ffb5,ffaf,fff7,00010017, 26
ffc5,ffc3,fff6,00000018, 27

	Title
	Revisions
	Driver install
	acq400_hapi install
	System diagram
	Setting up CS-Studio
	CSS
	Slide 8
	Slide 9
	Control script
	Control script 2
	Control script output
	Sample construction
	T_LATCH histogram
	Latency histogram
	Plotting 1
	data plot 1
	Plotting 2
	Data plot 2
	Plot 3
	Data plot 3
	DIO extra plot
	Sig gen - AO comparison
	Analysing latency
	Latencies as shown on a scope
	BOLO8 LLC
	BOLO8 LLC FAT
	New control program
	Hexdump
	Parsing the new BOLO8 data
	Debug 1
	Debug 2
	Debug 3
	Debug 4
	Debug 5
	Checking DI
	Toggling bits in the DI
	Hexdump of DI v AI
	acq196 emulation

